Intel, Asus, Cooler Master, Corsair Memory, Dell, Compaq, Gigabyte, Mercury, zebronics, AMD, Nexus, Delta, IBM, HP, Apple, Acer, BenQ, Sony, Samsung, LG, Philips, Transcend, Nvidia, SiS, Logitech, Alps Electric Corporation, Creative Technology, ASRock, Asus

Blog Archive

Monday, 6 February 2012

AMD: The Flexibility is in the Fabric

A theme of the new AMD is modularity. We've of course heard this before as it has always been a goal of AMD's to bring to market more modular, configurable designs, however this time the rhetoric is a lot more serious. In our earlier coverage we talked about future AMD SoCs allowing for a combination of AMD x86 CPU, GPU and 3rd party IP blocks. What AMD didn't mention during its Financial Analyst Day presentations however was how it would enable this pick-and-choose modular design. The secret, as it turns out, is in a new modular fabric that AMD is designing. 

It will take AMD until 2014 - 2015 to actually have the first, fully functional modular fabric in an SoC, but that's the goal. Being able to design a foundation that can interface with multiple buses (e.g. PCIe, HT, AMBA for ARM, etc...) will enable AMD to build more modular SoCs. 

With the fabric created, AMD can also change the way it does chip design. Today APU designs are seen from start to finish. Teams work on the various components of the design, but those components are viewed as a part of the whole, not as independents. E.g. the GPU portion of Trinity is worked on as Trinity's GPU, not a GPU block that will be re-used in other chips. Under the new AMD, teams will work on designing modular IP blocks without much focus on where they end up. You'll have teams that will work on a GPU block and simply move onto another GPU project after they're done.

Assuming AMD's new scalable SoC fabric is flexible enough, theoretically an APU designer could pick and choose from the various IP blocks and deliver a customized design that's decoupled from the individual blocks themselves. Similar to how you'll see an Imagination Technologies PowerVR SGX 540 in a variety of SoCs, AMD could build a GCN GPU block and use it in a variety of SoCs that address different markets. You can view AMD as having a broad portfolio of x86 and GPU cores and with this new SoC fabric it can mix and match those blocks as it sees fit. Furthermore, if the need arises, AMD could add in 3rd party IP where appropriate. 

We've actually heard of similar approaches to design from other companies in the SoC space, including Intel. With Atom Intel introduced a sea-of-FUBs (functional unit blocks) design methodology that leveraged more synthesized logic and modular blocks to reduce time to market and reduce feature creep. Atom also uses a fair amount of 3rd party IP (GPU, video encode/decode).

AMD's strategy makes a lot of sense. There's still a lot of execution that needs to happen before we get to the point where we can take modularity for granted, but the direction is sound.

]]>

0 comments:

Post a Comment

TOP PRODUCTS

Related Posts Plugin for WordPress, Blogger...
Design by ROCKY| computer hardware by ROCKY